Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2285240.v1

ABSTRACT

Background Antibodies targeting envelope glycoproteins have been shown in some instances to enhance infection by subverting Fc receptor and complement function, or by directly inducing fusion with cellular membranes. The potential for antibody dependent enhancement (ADE) of infection raises concern that passive immunization with a therapeutic anti-viral antibody could increase risk of disease. As part of the nonclinical package characterizing the risk profile of the SARS-CoV-2 neutralizing monoclonal antibody bamlanivimab, studies were conducted to evaluate the potential for ADE of infection in vitro and in a non-human primate model of COVID-19.Methods In vitro assays were performed in primary human macrophage, Raji, or THP-1 cells exposed to SARS-CoV-2 in the presence of bamlanivimab ranging from approximately IC50 to more than 100-fold above or below the IC50. Samples were evaluated for demonstration of productive viral infection. Bamlanivimab binding to C1q and FcR were quantified, and activity was studied by cell-based assays. In vivo studies were performed in African green monkeys (AGM) infected with SARS-CoV-2 virus following sub-saturating or saturating doses of bamlanivimab or IgG control. Viral loads, clinical pathology, and histology endpoints were assessed to determine if bamlanivimab enhanced SARS-CoV-2 replication or clinical illness. Mixed model repeated measures were used to evaluate virology statistics.Results Bamlanivimab did not increase viral RNA production in FcγR-expressing cell lines, despite demonstration of effector function. No significant differences were found among the AGM groups in terms of weight, temperature, or food intake. Treatment with bamlanivimab reduced viral loads in nasal and oral swabs and BAL fluid relative to control groups. Viral antigen was not detected in lung tissue from animals treated with the highest dose of bamlanivimab. Microscopic findings along with decreases in viral loads in bamlanivimab-treated animals indicated that ADE of disease was not observed in this study.Conclusions Sub-saturating doses of bamlanivimab treatment do not induce ADE of SARSCoV2 infection in either in vitro or an AGM model of infection. Findings suggest that high affinity monoclonal antibodies pose a low risk of mediating ADE in patients and further supports their safety profile as a treatment of COVID-19 disease.


Subject(s)
Severe Acute Respiratory Syndrome , Virus Diseases , COVID-19
2.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-86169.v1

ABSTRACT

COVID-19 pandemic is the third zoonotic coronavirus (CoV) outbreak of the century after severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) since 2012. Treatment options for CoVs are largely lacking. Here, we show that clofazimine, an anti-leprosy drug with a favorable safety and pharmacokinetics profile, possesses pan-coronaviral inhibitory activity, and can antagonize SARS-CoV-2 replication in multiple in vitro systems, including the human embryonic stem cell-derived cardiomyocytes and ex vivo lung cultures. The FDA-approved molecule was found to inhibit multiple steps of viral replication, suggesting multiple underlying antiviral mechanisms. In a hamster model of SARS-CoV-2 pathogenesis, prophylactic or therapeutic administration of clofazimine significantly reduced viral load in the lung and fecal viral shedding, and also prevented cytokine storm associated with viral infection. Additionally, clofazimine exhibited synergy when administered with remdesivir. Since clofazimine is orally bioavailable and has a comparatively low manufacturing cost, it is an attractive clinical candidate for outpatient treatment and remdesivir-based combinatorial therapy for hospitalized COVID-19 patients, particularly in developing countries. Taken together, our data provide evidence that clofazimine may have a role in the control of the current pandemic SARS-CoV-2, endemic MERS-CoV in the Middle East, and, possibly most importantly, emerging CoVs of the future.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Leprosy , Virus Diseases , COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.29.319566

ABSTRACT

A deficient interferon response to SARS-CoV-2 infection has been implicated as a determinant of severe COVID-19. To identify the molecular effectors that govern interferon control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human interferon stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors that inhibited viral entry, nucleic acid binding proteins that suppressed viral RNA synthesis, and a highly enriched cluster of ER and Golgi-resident ISGs that inhibited viral translation and egress. These included the type II integral membrane protein BST2/tetherin, which was found to impede viral release, and is targeted for immune evasion by SARS-CoV-2 Orf7a protein. Overall, these data define the molecular basis of early innate immune control of viral infection, which will facilitate the understanding of host determinants that impact disease severity and offer potential therapeutic strategies for COVID-19.


Subject(s)
COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.30.125856

ABSTRACT

COVID-19 was rapidly declared a pandemic by the World Health Organization, only three months after the initial outbreak in Wuhan, China. Early clinical care mainly focused on respiratory illnesses. However, a variety of neurological manifestations in both adults and newborns are also emerging. To determine whether SARS-CoV-2 could target the human brain, we infected iPSC-derived human brain organoids. Our findings show that SARS-CoV-2 was able to infect and kill neural cells, including cortical neurons. This phenotype was accompanied by impaired synaptogenesis. Finally, Sofosbuvir, an FDA-approved antiviral drug, was able to rescue these alterations. Given that there are currently no vaccine or antiviral treatments available, urgent therapies are needed. Our findings put Sofosbuvir forward as a potential treatment to alleviate COVID-19-related neurological symptoms. One Sentence SummarySARS-CoV-2 infection causes neuronal death and impaired synaptogenesis, both rescued by Sofosbuvir treatment.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.16.044016

ABSTRACT

The emergence of novel SARS coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of severe pneumonia-like disease designated as coronavirus disease 2019 (COVID-19). To date, more than 2.1 million confirmed cases and 139,500 deaths have been reported worldwide, and there are currently no medical countermeasures available to prevent or treat the disease. As the development of a vaccine could require at least 12-18 months, and the typical timeline from hit finding to drug registration of an antiviral is >10 years, repositioning of known drugs can significantly accelerate the development and deployment of therapies for COVID-19. To identify therapeutics that can be repurposed as SARS-CoV-2 antivirals, we profiled a library of known drugs encompassing approximately 12,000 clinical-stage or FDA-approved small molecules. Here, we report the identification of 30 known drugs that inhibit viral replication. Of these, six were characterized for cellular dose-activity relationships, and showed effective concentrations likely to be commensurate with therapeutic doses in patients. These include the PIKfyve kinase inhibitor Apilimod, cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825, and ONO 5334, and the CCR1 antagonist MLN-3897. Since many of these molecules have advanced into the clinic, the known pharmacological and human safety profiles of these compounds will accelerate their preclinical and clinical evaluation for COVID-19 treatment.


Subject(s)
COVID-19 , Pneumonia
SELECTION OF CITATIONS
SEARCH DETAIL